ForestDSH: a universal hash design for discrete probability distributions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization of Discrete Probability Distributions

to belong to the graphical model. This direction was emphasized, for example, by Pearl (1988) and Geiger We formulate necessary and sufficient conditions for and Pearl (1993). Lauritzen (1996, Chapter 3) coman arbitrary discrete probability distribution to facpared these approaches and herein we extend his retor according to an undirected graphical model, or sults. a log-linear model, or other ...

متن کامل

Quantization of Discrete Probability Distributions

We study the problem of quantization of discrete probability distributions, arising in universal coding, as well as other applications. We show, that in many situations this problem can be reduced to the covering problem for the unit simplex. Such setting yields precise asymptotic characterization in the high-rate regime. Our main contribution is a simple and asymptotically optimal algorithm fo...

متن کامل

Modelling Discrete Input Probability Distributions

Sometimes input probability distributions for stochastic models are not so simple that standard distributions suit. In this case, we model with weighted sums of standard distributions. These composed distributions may have many parameters which must be estimated. This is not easy with common estimation methods like maximum-likelihood. We use the genetic algorithm for that. The design of the com...

متن کامل

Factorization of Discrete Probability Distributions

We formulate necessary and sufficient conditions for an arbitrary discrete probability distribution to fac­ tor according to an undirected graphical model, or a log-linear model, or other more general exponen­ tial models. This result generalizes the well known Hammersley-Clifford Theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Data Mining and Knowledge Discovery

سال: 2021

ISSN: 1384-5810,1573-756X

DOI: 10.1007/s10618-020-00732-6